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Stem cell fate decisions are informed by physical and chemical cues presented within and by
the extracellular matrix. Despite the generally attributed importance of extracellular cues in
governing self-renewal, differentiation, and collective behavior, knowledge gaps persist with
regard to the individual, synergistic, and competing effects that specific physiochemical
signals have on cell function. To better understand basic stem cell biology, as well as to
expand opportunities in regenerative medicine and tissue engineering, a growing suite of
customizable biomaterials has been developed. These next-generation cell culture materials
offer user-defined biochemical and biomechanical properties, increasingly in a manner that
can be controlled in time and 3D space. This review highlights recent innovations in this
regard, focusing on advances to culture andmaintain stemness, direct fate, and to detect stem
cell function using biomaterial-based strategies.

The stem cell niche consists of a highly
dynamic extracellular microenvironment in

which biochemical and mechanostructural cues
displayed at specific times and locations guide
anisotropic function (Gattazzo et al. 2014; Vi-
ning and Mooney 2017). Bidirectional interac-
tions and signaling between stem cells and their
surroundings govern cell proliferation, migra-
tion, and differentiation throughout develop-
ment, homeostasis, and disease (Humphrey
et al. 2014; Lane et al. 2014; Rompolas et al.
2016). Despite overwhelming evidence indicat-

ing the indispensable nature of these variable
environmental cues, conventional biological
studies continue to be conducted on uniform
2D substrates of supraphysiological stiffnesses
(e.g., tissue-culture plastic, glass). Consequently,
cells experience incomplete and often nonnatu-
ral local cues, resulting in potentially abnormal
functional responses. Recognizing these defi-
ciencies, a growing and exciting effort has
focused on the development of advanced bio-
material culture platforms that better mimic the
in vivo environment, with many offering spatial
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and temporal control over their biochemical and
biomechanical properties. This review will high-
light several of these efforts, providing an over-
view of the systems used to regulate, control, and
better understand stem cell fate and function.

BIOMATERIAL ADVANCES TO CULTURE
STEM CELLS AND MAINTAIN STEMNESS

The stem cell niche is defined as the local micro-
environment that regulates cell fate and function
(Ehninger and Trumpp 2011). The niche is
predominantly composed of the extracellular
matrix (ECM) and various regulatory species
including cytokines, hormones, and growth fac-
tors. Biochemical and physical cues embedded
within or tethered to the ECM directly interact
with niche-residing cells, modulating their be-
havior (Fig. 1). These behaviors vary depending
on the state of the tissue and can include but are
not limited to stem cell quiescence, self-renewal,
and differentiation (Gattazzo et al. 2014).

Maintaining stem cells in their undifferenti-
ated statewhile facilitating proliferation and self-
renewal is often one of the most important goals
for culture. In vivo, the ECM plays an essential
role in the maintenance of stemness, defined by
the cell’s potential for self-renewal and differen-
tiation (Dumont et al. 2015; Thomas et al. 2015;
Ishii et al. 2018). In skeletal muscle, for example,

ECM proteins like collagen, fibronectin, and
laminin are required for the maintenance of sat-
ellite cells (Bentzinger et al. 2013). As these ECM
proteins are numerous and likely act synergisti-
cally, one strategy to recapitulate the in vivo
microenvironment in vitro has been to use de-
cellularized ECM (dECM). In this approach, liv-
ing cells and nuclear material are removed from
tissues without affecting structural integrity and
composition of the native cell-assembled ECM
(Gilbert et al. 2006). The resultant dECM is then
used as a scaffold for new cells, an effective strat-
egy established many years ago (Pruniéras et al.
1983a,b). Pattabhi et al. (2014) showed that
dECM deposited by naive human mesenchymal
stem cells (hMSCs from bone marrow) en-
hanced the proliferation and preservation of
stemness. Neural stem cells (NSCs) have shown
similar trends; decellularized mouse brain sec-
tions supported long-term3Dculture andmain-
tained stemness of NSCs (DeWaele et al. 2015).
In combination with 3D bioprinting techniques
(Pati et al. 2014), dECM can be cast in custom-
izable shapes that better match native tissue and
organ structure.

Although dECM systems display biochemi-
cal, structural, and mechanical properties simi-
lar to that of the native ECM, challenges exist in
independently modulating or tuning these ef-
fects. Toward this, synthetic chemical approach-
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Figure 1. Stem cell fate and function are regulated through an integrated interpretation of biochemical and
biophysical cues presented by and within the extracellular matrix (ECM). These environmental signals govern
stem cell maintenance and lineage-specific differentiation.
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es have been developed to create culture systems
whose physiochemical properties can be pre-
cisely controlled. These strategies have enabled
investigation of how mechanical and structural
aspects of cell scaffolds drive stem cell pro-
liferation and undifferentiated maintenance.
The Blau group first reported that muscle stem
cell function is enhanced through culture on
bioengineered substrates with tissue-like stiff-
ness. Culturing cells on poly(ethylene glycol)
(PEG)-based hydrogels with stiffnesses between
2 and 42 kPa, hydrogels whose stiffnessmatched
that of native muscle (12 kPa) enhanced stem
cell self-renewal following transplantation into
mice (Gilbert et al. 2010). Similar studies have
been reported with neural crest–derived ecto-
dermal MSCs (eMSCs), in which polydimeth-
ylsiloxane (PDMS) substrates prepared with
different stiffnesses by varied prepolymer ratios
gave rise to varied Rho-ROCK signaling of
cultured cells (Srinivasan et al. 2018). eMSCs
cultured on soft substrates showed increased
CD44 expression, modulating eMSC self-re-
newal and multipotency caused by the down-
regulation of platelet-derived growth factor
receptor β (PDGFRβ) signaling.

Although the effects of network mechanics
on stem cell fate have largely focused on 2D
culture, 3D platforms to expand and maintain
stem cells are also of interest. In one such system,
Lei and Schaffer cultured cell human pluripotent
stem cells (hPSCs) within thermoreversible hy-
drogels based on poly(N-isoproylacrylamide)-
co-poly(ethylene glycol) (PNIPAAm-PEG)
(Lei and Schaffer 2013). The thermoreversibility
of this system, transitioning from a soft solid to a
liquid through temperature cycling between 4°C
and 37°C, enables encapsulation, expansion,
and subsequent collection of hPSCs at any
time. With a ∼20-fold expansion of hPSCs per
passage during 4–5 d cultivation, they showed a
1072-fold increase in cell numberof >60 passages
for 280 d. More recently, Heilshorn and col-
leagues developed a 3D hydrogel system based
on elastic-like proteins (ELPs) to maintain neu-
ral progenitor cell (NPC) stemness (Madl et al.
2017). Screening hydrogels with a variety of
physiologically relevant stiffnesses (∼0.5–50
kPa), they found that NSCs maintained stem-

ness provided that cell-induced matrix remod-
eling was possible.

Maintenance of stemness has been correlat-
ed with low actomyosin contractility, typically
associated with softer substrates (Winer et al.
2008; Chowdhury et al. 2010; Mih et al. 2012).
Structural cues have been shown to have an
important role in actomyosin contractility, gen-
erally through studies involving geometric con-
finement of cell adhesion. In this regard, the
Chen andWatt groups have performed pioneer-
ing works highlighting the impact of geometric
confinement on stem cell function (McBeath
et al. 2004; Ruiz and Chen 2008; Connelly
et al. 2010). Zhang and Kilian have exploited
microcontact printing of self-assembled mono-
layers to isolated hMSCs on small adhesive is-
lands for maintenance of stemness (Zhang and
Kilian 2013). When tightly confined, hMSCs
displayed enhanced expression of stem cell
markers, STRO-1 and Endoglin, suggesting a
route to use geometrically defined platforms to
maintainmultipotency in vitro. Somewhat relat-
ed to 2D geometric confinement, cell substrate
topography can also influence cell function (e.g.,
contact guidance, topotaxis) (Teixeira et al.
2003; Park et al. 2018). Dalby et al. (2007)
showed that hMSC maintenance and directed
differentiation could be influenced by surface
topography; topographically defined surfaces
containing disorderly arranged 120-nm-deep
nanopits promoted osteogenesis, although those
with regularly arranged pits promoted main-
tained expression of stem cell markers (e.g.,
STRO-1, ALCAM) (McMurray et al. 2011). Rec-
ognizing the effects that surface topography
have on stem cell fate, de Boer and Watt and
colleagues screened 2176 distinct surface topog-
raphies to seewhich best promotedmaintenance
of induced PSCs (iPSCs) (Reimer et al. 2016).
Optimal topographies were thosewith small fea-
ture size, high wave number, and high feature
density; these were capable of maintaining
short-term iPSC pluripotency even when very
stiff polystyrene substrates were used.

As discussed,maintenance and expansion of
stem cells can be manipulated by tuning the
biochemical, mechanical, and structural cues in-
corporated into culture platforms. Although
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modulation of individual effects has already
been shown to have a profound influence on
cell function, synergistic strategies that optimize
several factors simultaneously will be critical in
identifying culture conditions for a given appli-
cation.

BIOMATERIAL-BASED STRATEGIES TO
DIRECT CELL FATE

Physical and chemical cues presented by the
ECM guide cell function. Here, strategies to
probe and direct stem cell fate through tunable
biomaterials are examined. Culture platforms
whose properties can be dynamically modulated
with external factors (e.g., light [Ruskowitz and
DeForest 2018], temperature [Yamato et al.
2007], pH [Kocak et al. 2017], DNA [Murakami
and Maeda 2005], enzymes [Ulijn 2006], and
other fields [Kharkar et al. 2013; Manouras
and Vamvakaki 2016; Uto et al. 2017b; Badeau
and DeForest 2019]) are highlighted.

Biomaterials with Tunable Static Mechanics

By varying material composition, cross-linking,
and processing, static biomaterials can be readily
formulated with stiffnesses that span all physio-
logical tissues (Fig. 2A). These materials have
helped reveal the important effects that network

mechanics have on cell function. From this, stiff
materials tend to promote attachment and
spreading of adherent cells, whereas softer sub-
strates yield soft tissue differentiation and tissue-
like cell–cell associations depending on the cell
type (Discher et al. 2005; Wells 2008). Although
substrates of defined moduli can be used to
maintain stemness (discussed above), stiffness
can also be used as a variable to promote line-
age-defined differentiation. In their landmark
2006 study, Engler and colleagues reported that
hMSC expressed early neuro-, myo-, osteogenic
markers on substrates whose moduli matched
that of brain (0.1–1 kPa), muscle (8–17 kPa),
and precalcified bone (25–40 kPa) (Engler et al.
2006). Stiffness-influenced stem cell function
and directed differentiation is now widely re-
ported.

Advanced processing techniques have also
been used to create biomaterials with gradient
stiffnesses (Hadden et al. 2017). These systems
have helped establish the concept of durotaxis,
in which cell migration is guided by gradients in
substrate rigidity (Lo et al. 2000; Kidoaki and
Matsuda 2008; Sunyer et al. 2016). Additionally,
these platforms have enabled rapid screening of
a broad range of physiological stiffness on cell
function yielding the important observation
that hMSC differentiation occurs in a dose-
dependent manner (Hadden et al. 2017).
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Figure 2. “Static” and “dynamic” biomaterials for directing stem cell fate. (A) Static biomaterials can provide a
constant mechanical/biochemical cue that may be initially specified. (B–D) Dynamic biomaterials can be me-
chanically and biochemically modulated in the presence of live cells both (B) passively in response to the
surrounding environment or (C) on demand through a triggered input. (D) Some dynamic biomaterials can
reversibly present mechanical and/or biochemical cues in response to environmental stimuli.
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Softening Biomaterials

Dynamic changes in tissue stiffness that accom-
pany development, homeostasis, and disease
can direct stem cell function (Gattazzo et al.
2014). Culture platforms whose stiffness can
be altered on demand can provide unique in-
sights into these biological phenomena (Fig.
2B). Biomaterials that undergo hydrolytic, cell-
mediated, or externally mediated softening have
been widely reported.

Biomaterials have been synthesized that
show hydrolytic degradation (Fig. 3A,B); these
materials undergo gradual softening under
aqueous cell culture. Gjorevski and colleagues
used one such material to control intestinal
stem cell (ISC) behavior and intestinal organoid
generation (Fig. 3C; Gjorevski et al. 2016). ISCs
maintained in these initially stiff materials
showed Yes-associated protein (YAP) activation
associated with self-renewal and expansion, but

could dissipate accumulated compressive forces
and undergo organogenesis on partial material
degradation.

Biomaterials have also been designed that
are degraded by cell-secreted enzymes, allowing
for the gradual matrix remodeling on a cell-dic-
tated timescale (Fig. 3B; Kharkar et al. 2013). In
what has proven to be a particularly powerful
strategy reported by Lutolf and colleagues,
hydrogels cross-linked with matrix metallopro-
teinase (MMP)-sensitive peptides degrade at
tunable rates governed by the sequence of
the used peptide (Lutolf et al. 2003). The Bur-
dick group established that the enzymatic deg-
radative susceptibility of the biomaterial can
influence hMSC differentiation (Khetan et al.
2013). High-throughput studies involving such
enzymatically degradable materials have further
revealed that proteolytic degradability favors cell
self-renewal ability rather than proliferation as
well as the role of dynamic matrix mechanics on
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somatic-cell reprogramming to iPSCs (Ranga
et al. 2014). Similar materials have also been
used to generate human intestinal organoids
from PSCs (Cruz-Acuña et al. 2017, 2018).

Materials that respond to exogeneous stim-
uli have proven useful for on-demand softening
(Fig. 2C). TheAnseth group introduced the con-
cept of photodegradable culture materials, in
which directed light exposure could be used to
specify when, where, and to what extent a ma-
terial softens (Fig. 3A,B; Kloxin et al. 2009).
User-triggered material softening in these sys-
tems has been shown to govern cellmorphology;
hMSCs transition from a rounded cell morphol-
ogy in a stiff matrix to a more spread shape with
numerous cell projections onmaterial softening.
In addition, these materials have permitted in-
vestigation of whether stem cell fate shows “me-
chanical memory” influenced by culture history
(Fig. 3D; Yang et al. 2014); hMSCs cultured on
initially stiff (∼10 kPa) matrices that were pho-
to-softened (∼2 kPa) showed variable activation
of YAP depending on the time previously spent
on the stiff substrate.

Stiffening Biomaterials

Although significant efforts have been dedicated
to materials that soften over time, biomaterials
that stiffen are also of interest. Driving this in-
novation are observations thatmany diseases are
associated with tissue stiffening, including liver
cirrhosis and cardiac fibrosis (Georges et al.
2007). Recognizing that many of these changes
in vivo are associated with initiation of collagen
cross-linking (Levental et al. 2009), biomaterial
scientists have developed platforms that also
show increased synthetic cross-linking over
time (Fig. 2B,C). This can be achieved by taking
advantage of slow chemical reactions that pro-
ceed over the course of many days, as has been
performed with stiffening hydrogels to enhance
cardiomyocyte differentiation in vitro (Young
and Engler 2011) or using cross-linking chem-
istries that can be exogenously triggered upon
addition of external stimuli (e.g., temperature,
pH, DNA, light).

One useful strategy for making stiffening
biomaterials for stem cell culture has involved

the usage of temperature-responsive poly-
mers, primarily poly(N-isopropylacrylamide)
(PNIPAAm). PNIPAAm-based materials have
been shown to undergo 2D and 3D microenvi-
ronmental stiffening altered by the heating (Aki-
moto et al. 2016, 2018). Tuning PNIPAAm
properties and material composition gives tun-
ability over what the “soft” and “stiff” stiffnesses
will be, as well as the point at which these tem-
perature changes occur. Significant effort has
gone into tuning polymer properties such that
these changes can be triggered without much
deviation from body temperature (Ebara et al.
2012; Uto et al. 2014, 2016, 2017a, 2018). Inter-
estingly, the PNIPAAm-based stiffening can
also involve a volumetricmaterial change, which
has been applied to create mechanically actuat-
able cell culture devices (Hashmi et al. 2014).

Materials that stiffen in response to pH
changes have also been developed. In one exam-
ple, Yoshikawa and colleagues reported thin
micellar hydrogels based on ABA-type triblock
copolymers composed of pH-sensitive poly
(2-(diisopropylamino)ethyl methacrylate) as A
blocks. These materials showed a 30-fold in-
crease of Young’s modulus during a modest pH
change from 7.0 to 8.0 (Yoshikawa et al. 2011).
Cells cultured on these materials throughout
the stiffening processes showed a flatter mor-
phology accompanied by increased stress fiber
formation. As with temperature-sensitive mate-
rials, special care must be taken to ensure that
the pH changes used that are required to elicit a
material response do not themselves affect stem
cell fate.

Sidestepping concerns that administered
stimuli could inadvertently and directly affect
stem cell function, efforts have been made to
use fully cytocompatible inputs. Systems that
can be cross-linked on addition of DNA is one
way to achieve this. DNA strands can be cova-
lently attached to polymers, permitting zipping
together on addition of a complementary strand
based onWatson–Crick–Franklin pairing (Jiang
et al. 2010). Other strategies involving ion- (Gil-
lette et al. 2010) and biological ligand-respon-
sive chemistries (Miyata et al. 1999; Murphy
et al. 2007) have been reported to create dynam-
ic stiffening materials.

K. Uto et al.

6 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a035691

 on December 17, 2019 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Owing to its ability to modulate material
properties with spatiotemporal control, light
has also been used to create cell-culture plat-
forms that undergo triggered stiffening (Fig.
2C). Using appropriately selected and cytocom-
patible wavelengths, photocontrol of material
properties can be gained through dimerization,
isomerization, or covalent chemical reactions.
The light-induced dimerization characteristics
of coumarin arewidely used for biomaterial stiff-
ening (Matsuda and Mizutani 2000; Matsuda
et al. 2000). In one example, Tamate and col-
leagues reported that photostiffening of 3D hy-
drogels based on coumarin ABA-type triblock
copolymers affected cell morphology and prolif-
eration (Tamate et al. 2016). Similar strategies
involving anthracene photodimerization have
been used to study mechanobiology (Günay
et al. 2019). Biomaterials secondarily cross-
linked by photopolymerization after initial for-
mation have proven a useful tool to study stem
cell differentiation. The Burdick laboratory has
established hyaluronic acid–basedmaterials that
can be photostiffenedwithinminutes by several-
fold and used to examine osteogenic/adipogenic
differentiation of hMSCs (Guvendiren and Bur-
dick 2012). These platforms have been used to
show that the timepoint in which the culture
material is stiffened can result in different differ-
entiation pathways, as well as to investigate the
dynamics of hepatic stellate cell mechanotrans-
duction duringmyofibroblast activation (Caliari
et al. 2016).Although low-wavelengthultraviolet
(UV) light (<254 nm) results in DNA damage,
recent studies have confirmed that near-UV light
(>365 nm) does not affect stem cell function
(Ruskowitz and DeForest 2019). As such, efforts
to create stiffening materials that respond to vis-
ible (Hao et al. 2014; Truong et al. 2017) and
near-infrared (NIR) light (Stowers et al. 2015)
have been undertaken. In addition to decreased
phototoxicity, NIR- and IR-responsivematerials
are more amenable to in vivo regulation.

Biomaterials with Reversible Stiffening

Although many of the material platforms high-
lighted above yield a one-way (irreversible)
change to culture mechanics, strategies based

on reversible reactions have also been reported
that provide bidirectional stiffness control (Fig.
2D; Rosales and Anseth 2016). Such materials
may be better suited to study the effects of re-
versible tissue dynamics (e.g., disease followed
by healing, stiffness changes associated with
pulsatile blood flow). Systems that show revers-
ible cross-linking can offer cycled stiffness. Ma-
terials cross-linked with DNA can be altered
based on addition of cross-linking and/or dis-
placing strands, a strategy that has been used to
investigate the temporal windows by which
adult NSCs commit to different fates in response
to ECM stiffness (Rammensee et al. 2017). Ex-
ploiting reversible changes in protonation has
been used to cycle substratemechanics with var-
ied pH; hMSCsmechanically stressed by cycling
material stiffness between 40 kPa and 2 kPa ev-
ery 2 days showed enhanced proliferation, al-
though higher frequencies in elasticity changes
(Frank et al. 2016). Reversible stimuli-triggered
multimerization of proteins can also be used to
cycle biomaterial mechanics (Lyu et al. 2017;
Wu et al. 2018), which has been used to study
mechanosignaling-induced transcriptional re-
programming of hMSCs (Hörner et al. 2019).

Rather than making and breaking bonds to
cycle material properties, other strategies have
exploited isomerization reactions to alter cross-
linking density and material stiffness. Azoben-
zene, a small molecule linker that transitions
from a trans to cis isomer and back again in
response to UV or blue light irradiation, has
also been used to creatematerials with reversible
stiffening (Rosales et al. 2015, 2018; Lee et al.
2018a). Cross-linkers based on stimuli-respon-
sive protein–protein fusion proteins have been
used to create materials whose stiffness can be
cycled in response to arbitrary stimuli including
calcium or blue light (Liu et al. 2018).

Other external forces have also been used to
reversibly stiffen materials. Elastic substrates
exposed to cyclic stretching have been used to
direct fibroblast-to-myofibroblast transdifferen-
tiation (Molkentin et al. 2017). Magnet-respon-
sive materials have also shown promise in this
regard; magnetic field–induced cycling of bio-
material stiffness has been used to modulate
hMSC osteogenesis (Abdeen et al. 2016).
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Biomaterials with Tunable Stress–Relaxation

In addition to stiffness, biomaterial viscoelastic-
ity and stress–relaxation have proven important
parameters in the study and culture of stem cells
(Fig. 4). Formation of biomaterials using equi-
librium reactions of different strengths (e.g.,
guest–host chemistries [Rodell et al. 2013], hy-
drophobic interactions [Liu et al. 2011], hydro-
gen bonding [Tan et al. 2012], and dynamic
covalent linkage [Yang et al. 2012]) enables cre-
ation of biomaterials with tunable viscoelastici-
ty. By comparing stem cell function in materials
that are fully elastic with those that show differ-
ent degrees of stress relaxation, Chaudhuri and
Mooney have shown the substantial impact that
stress relaxation has on cell fate (Chaudhuri
et al. 2015a,b). hMSCs cultured in alginate
gels showed enhanced spreading, proliferation,
and osteogenic differentiation when cultured in

materials showing quicker relaxation. Similar
effects have been observed in synthetic poly-
mer culture materials, covalently cross-linked
through dynamic covalent hydrazone bonds
(McKinnon et al. 2014). Because the native
ECM shows some degree of stress relaxation
(Chaudhuri et al. 2015b), culture materials that
isolate these effects are of prime interest.

Biochemically Defined Static Biomaterials

In addition to biophysical cues, biochemical
cues presented by the ECM play a governing
role in specifying stem cell fate. Although bio-
logically derived materials such as Matrigel pre-
sent many of the cues required to sustain and
promote specific function, their batch-to-batch
variability and ill-defined nature overall renders
it challenging to conclusively attribute the influ-
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ence of a single biochemical factor with function
(Klotz et al. 2019). Chemically defined bioma-
terials are beneficial in this regard, particularly
when their components are fully synthetic. Bio-
materials based on synthetic polymers, for
example, PEG and poly(lactic acid), offer tre-
mendous advantages, providing a “blank slate”
by which the influence of well-defined combi-
nations of biochemical factors on cell functions
can be readily investigated (Arakawa and De-
Forest 2017). Similar to conventional tissue cul-
ture, bioactive proteins, peptides, and small
molecules can be readily added to the culture
media to provide uniform and replenishable ex-
posure to soluble cues. Unique to biomaterial-
based strategies is the ability to tether species to
surfaces and throughout materials, mimicking
important aspects by which bioactive species
are often presented by the ECM in vivo. When
factors are immobilized onto and within bioma-
terials, the chemistries used and the physical
residues for tethering must be carefully selected
so as to maintain their bioactivity (Spicer et al.
2018). Static chemically patterned biomaterials
can be generated through a variety of additive
manufacturing techniques (Tibbitt and Anseth
2009; Tse and Engler 2010; Habib et al. 2013).

Dynamic Immobilization of Biochemical
Factors

Although biomaterials aremost often biochemi-
cally decorated at the time of synthesis, many
strategies exist to control functionalization over
time. This is generally achieved by formulating
materials to contain reactive handles that can be
later exploited for the immobilization of pro-
teins, peptides, and small molecules. A large
and growing number of chemistries has been
used in this regard, although “bioorthogonal
click” reactions have garnished significant atten-
tion as functionalization can be performed in
the presence of living cells without directly af-
fecting their function (Fig. 5A,B; Sletten and
Bertozzi 2009). For example, materials deco-
rated with azide groups can be postsynthetical-
ly functionalized with cycloalkyne-containing
species, just as those with pendant tetrazines
can be modified with strained alkenes (Black-

man et al. 2008; Zhang et al. 2016). Spontaneous
and triggered reaction strategies afford tem-
porally controlled material functionalization.
Functionalization of biomaterials using reac-
tions that can be further controlled in space
(e.g., light, temperature, ultrasound) affords
full spatiotemporal regulation over biochemical
factor immobilization. Light-based strategies are
beneficial in this regard, being able to confine
cell attachment, migration, outgrowth (Fig.
5C), differentiation, and other biochemical
functions to specific regions within biomaterials
(Luo and Shoichet 2004; Hahn et al. 2006; Hoff-
mann and West 2010; DeForest and Anseth
2011; Wylie et al. 2011; Mosiewicz et al. 2013).
Photochemical-based strategies have been used
to generate 2D and 3D patterns of immobilized
cues in both discrete and graded patterns,
whereby nonuniform sample irradiation enables
heterogeneous material functionalization in
manners that can mimic native tissue.

Controlled Release of Biochemical Factors

Just as biochemical cues can be tethered to bio-
materials to regulate stem cell fate, their con-
trolled soluble presentation can also influence
function. Many biomaterials use restricted dif-
fusion and affinity interactions to tune the re-
lease rate of bioactive species (Lin and Metters
2006; Peppas et al. 2006; Lin and Anseth 2009).
Although such strategies are relatively powerful
and simple to implement, release profiles must
be defined a priori and cannot be adjusted post-
formulation. Triggered release can be obtained
by tethering species to biomaterials through de-
gradable bonds, yielding soluble presentation on
bond severance. Hydrolytically sensitive bonds
yield gradual release in aqueous environments,
although those sensitive to pH, reductants, or
enzymes have been used to release many bioac-
tive species in response to a variety of biologi-
cally relevant external stimuli (Chen et al. 2013;
Purcell et al. 2014; Ham et al. 2016; Guo et al.
2017). Recent strategies have established logic-
based release of bioactive cues only in response
to complex combinations of environmental in-
puts following Boolean YES/OR/AND opera-
tions (Badeau et al. 2018; Gawade et al. 2019;
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Ruskowitz et al. 2019). Alternatively, full spatio-
temporal release of bioactive factors can be af-
forded using photodegradable moieties (Kloxin
et al. 2009; Azagarsamy and Anseth 2013). In
one implementation, use ofwavelength-selective
chemistries enabled sequential delivery of BMP-
2 and BMP-7 to hMSCs to drive osteogenic dif-
ferentiation (Azagarsamy and Anseth 2013).

Reversible Immobilization of Biochemical
Cues

Toward recapitulating full dynamic biochemical
signaling in vitro, some progress has been made
toward creation of biomaterials that can be re-
versibly functionalized with bioactive factors.
Metal affinity interactions (e.g., Ni-NTA with
6xHis-tagged species), DNA dimerization, and
enzyme-based strategies have been developed

that provide triggered control over species
immobilization and release (Liu et al. 2010;
Kolodziej et al. 2011; Ham et al. 2016). Full
spatiotemporal control can be obtained when
light-based reactions are used to trigger species
binding/unbinding. Use of bond-forming/
breaking reactions initiated with different wave-
lengths of light has permitted dynamic control
of cell adhesion through reversibly immobilized
peptides (DeForest and Anseth 2012). Photoex-
change reactions have been used to control
hMSC spreading and transforming growth fac-
tor-β signaling of mouse embryonic fibroblasts
(Gandavarapu et al. 2014; Grim et al. 2018).
Sequential photochemistries have been used to
dynamically control attachment, proliferation,
growth, differentiation, and intracellular sig-
naling in 3D and with subcellular resolution us-
ing patterned protein growth factors (Fig. 5C,D;
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Figure 5. Dynamic biomaterials with tunable biochemical cues. (A) Hydrogels can present dynamic biological
cues by removal and addition of bioactive molecules. Photochemistry allows spatiotemporal removal and se-
quential presentation of biochemical cues for 2D and 3D environment of hydrogels. (B) Reactions commonly
used to conjugate biomolecules to biomaterials include thiol-ene, Michael-type, azide-alkyne, and oxime liga-
tions. Dynamic regulation of biochemical cues within 3D hydrogels enable (C) creation of complexmulticellular
3D structures and (D) spatiotemporal regulation of stem cell differentiation. Scale bar, 100 μm. (Panel C created
from data in DeForest and Anseth 2011. Panel D created from data in DeForest and Tirrell 2015.)
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DeForest and Tirrell 2015; Shadish et al. 2019).
Reversibly patterned vitronectin presentation
has permitted spatiotemporally mediated con-
trol over osteogenic differentiation dynamics,
whereas user-defined release of epidermal
growth factor (EGF) has been exploited to pat-
tern EGF receptor activation and downstream
signaling.

DETECTING STEM CELL BEHAVIOR USING
BIOMATERIAL APPROACHES

For the past many years, biochemical methods
such as fluorescent immunostaining, gene and
protein expression by polymerase chain reaction
(PCR), and enzyme-linked immunosorbent as-
say (ELISA), respectively, have served as the bi-
ological workhorses for analyzing stem cell fate
and function. Despite the wealth of information
that these techniques provide, many such tradi-
tional methods generally require destructive
protocols (e.g., fixation, lysis) and provide only
a static snapshot of what is occurring through-
out dynamic biological processes. Although bi-
omaterial strategies have discovered profound
use in the culture and direction of stem cell fates,
their tunability also enables newfound routes to
probe and detect microenvironmental effects on
cell function in a manner that is dynamic and
nondestructive, providing real-time informa-
tion of cell function that is complementary to
that given using FRET-based biosensors, fluo-
rescence-activated cell sorting (FACS), and in
vivo lineage tracing.

Cell sorting is an essential tool in the field of
stem cell biology for defining and collecting tar-
get cells with high purity. Because antibody la-
bels may not be available for all cell types and
may potentially interfere with expansion and
differentiation, label-free strategies for cell sort-
ing have gained popularity. Here, intrinsic cell
markers including size, electrical polarizability,
and hydrodynamic properties are used to iden-
tify or separate specific cells (Gossett et al. 2010).
Although hardware engineering has yielded an-
alytical advances in this regard, several bioma-
terial-based approaches have also been reported
for achieving label-free cell sorting. Photode-
gradable hydrogels have been used to capture

cells through 2D surface interactions, and then
release through material degradation (Shin et al.
2014). To extend the overall throughput of these
collection strategies, similar approaches involv-
ing cell-adhesive degradable microbeads have
been used (Siltanen et al. 2013). Photodegrad-
able gels have also been used for optically spec-
ified collection encapsulated cells from within
3D materials of well-defined properties (De-
Forest and Anseth 2011; Tamura et al. 2014).

In addition to collecting cells, biomaterial-
based strategies have been exploited to under-
stand how cells interact with their surroundings.
Given their importance in stemcellmaintenance
and decisions of fate, several efforts have sought
to study and quantify traction forces exerted by
cells on their local environment (Polacheck and
Chen 2016). Early strategies used a wrinkling
silicone membrane to measure contractile cellu-
lar forces (Harris et al. 1980). More recently,
traction force microscopy (TFM) has been de-
veloped to analyze cellular contraction forces,
providing spatial information in a quantitative
manner (Lee et al. 1994). In traditional TFM,
cells are seeded on elastic materials containing
immobilized fluorescent beads. In conjunction
with knowledge of the material stiffness, mea-
surements of individual beaddisplacements pro-
vide information about cell-generated forces. To
study both themagnitude and direction of forces
by cells plated in 2D, Salaita’s group combined
molecular tension probes and fluorescence po-
larization microscopy in a technique known as
molecular force microscopy (MFM) (Brockman
et al. 2018). Subcellular force determination has
also been achieved by seeding cells onto micro-
post arrays, in which post displacement gives
information about the magnitude and direction
of cell traction forces (Tanet al. 2003). By varying
post length and density, as well as underlying
material composition, cell function can be as-
sayed under variedmechanical inputs, including
those that direct differentiation (Fu et al. 2010).
Nanopillar electrode arrays have also been gen-
erated to assay cell action potentials using high-
throughput electroporation, which has been
applied to study hPSC-derived cardiomyocyte
electrophysiology and stem cell differentiation
(Kim et al. 2015; Lin et al. 2017; Lee et al. 2018b).
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Biomaterial strategies can also provide in-
formation about how cells are behaving within
3Dmaterials. TFM has been extended for appli-
cation with 3D cell culture, where both cells and
fluorescent beads are embedded within 3D gels
and tracked/analyzed with finite-element tech-
niques (Legant et al. 2010). These techniques
have been applied to examine the effect of ma-
trix degradation and cellular traction force on
hMSC differentiation (Khetan et al. 2013). By
tracking the Brownian motion of embedded
particles, “microrheology” techniques provide
information about spatial change of material
mechanics remodeling of cell-laden hydrogel
and how this changes through stem cell prolif-
eration and migration (Schultz et al. 2015). Flu-
orogenic biomaterials have also been developed
that will fluoresce on cell-mediated enzymatic
degradation, enabling visualization of 3D cell
migratory paths (Lee et al. 2007; Leight et al.
2013). Collectively, such biomaterial strategies
offer new and powerful routes to understand
basic stem cell function.

CONCLUDING REMARKS

As highlighted in this review, a growing collec-
tion of customizable biomaterials exists that
provide user-defined control over the biochem-
ical and biomechanical parameters comprising
the stem cell niche. Suchmaterials offer tremen-
dous potential with respect to advancing our
understanding of cell physiology, maintaining
stemness, and directing desired fates including
differentiation. Whether to reliably culture and
expand stem cells before transplantation, pro-
mote their enhanced engraftment in direct cell
therapy, or to aid in the engineering of complex
functional tissue for transplantation, these sys-
tems are poised to translate stem cell therapies
into the clinic as well as further revolutionize
our understanding of stem cell biology.
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